Чернобыльская авария.
Причины, хроника событий, выводы.

 

ЧернобыльЧернобыльская атомная электростанция находится на самом севере Украины в Киевской области около впадения реки Припять в Днепр. В 112 километрах южнее Киев, а в 100 км восточнее Чернигов. Непосредственно место, где находится станция и городок обслуживающего прсонала называется город Припять. Он на карте обозначен красной точкой. Коричневый круг - это 30-ти километровая зона, в которой запрещено проживание и длительное нахождение. В период 1987-88 годов едва-ли не все населенные пункты в этой зоне были ликвидированы дабы исключить проживание в этой зоне людей. 
К весне 1986 года на Чернбыльской АЭС действовали четыре энергоблока. Каждый энергоблок состоит из ядерного реактора и двух паровых турбин. Все четыре реактора однотипные РБМК-1000.

Но прежде чем перейти к непосредственному описанию чернобыльской катастрофы требуется разъяснить ряд основополагающих физических понятий и терминов, в общих чертах рассказать об устройстве реактора и самой станции. 

Физические процессы, происходящие в ядерном реакторе

Схема чернобыляАтомная электростанция мало чем отличается от тепловой электростанции. Вся разница в том, что в тепловой электростанции пар для турбин, приводящих во вращение электрогенераторы получается за счет нагрева воды от сжигания угля, мазута, газа в топках паровых котлов, а на атомной электростанции пар получается в ядерном реакторе все из той же воды.

При распаде атомного ядра тяжелых элементов из него вылетает несколько нейтронов. Поглощение такого свободного нейтрона другим атомным ядром, вызывает  возбуждение и распад  этого ядра. При этом из него высвобождается также несколько нейтронов, которые в свою очередь... Начинается так называемая цепная ядерная реакция, сопровождаемая выделением тепловой энергии.

Внимание! Первый термин! Коэффициент размножения - К . Если на данной стадии процесса число образовавшихся свободных нейтронов равно числу нейтронов, которые вызвали деление ядер, то К=1 и каждую единицу времени выделяется одинаковое количество энергии, если же число образовавшихся свободных нейтронов больше числа нейтронов, которые вызвали деление ядер, то К>1 и в каждый следующий момент времени выделение энергии будет нарастать. А если  число образовавшихся свободных нейтронов меньше числа нейтронов, которые вызвали деление ядер, то К<1 и в каждый следующий момент времени выделение энергии будет уменьшаться.

Задача персонала дежурной смены электростанции как раз и состоит в том, чтобы удерживать К примерно равным 1. Если K<1, то реакция будет затухать, количество вырабатываемого пара уменьшаться, пока реактор не остановится. Если К>1 и его не удается сделать равным 1, то произойдет то, что и произошло на Чернбыльской АЭС.

К сожалению реактор РБМК  отличается тем, что им необходимо УПРАВЛЯТЬ, иначе можно  "съехать с дороги". 

Кажется нетрудно придти к выводу, что реакция ядерного деления будет все время нарастать, т.к. один свободный нейтрон при расщеплении атомного ядра высвобождает 2-3 нейтрона и число свободных нейтронов должно все время возрастать.Чтобы этого не происходило,  между трубками, содержащими ядерное топливо помещают трубки, содержащие вещество, хорошо поглощающее нейтроны (кадмий или бор). Выдвигая из активной зоны реактора, или наоборот вводя в зону такие трубки можно с их помощью захватывать часть свободных нейтронов, регулируя таким образом их количество в активной зоне реактора и поддерживая коэффициент К близким к единице.

При делении ядер урана из их осколков образуются ядра более легких элементов. Среди них теллур-135, который  превращается в  йод-135, а йод быстро в свою очередь превращается в ксенон-135. Этот ксенон очень активно захватывает свободные нейтроны. Если реактор работает в стабильном режиме, то  атомы ксенона-135 довольно быстро выгорают и на работу реактора не влияют. Однако при резком и быстром снижении по каким либо причинам  мощности реактора ксенон выгорать не успевает и начинает накапливаться в реакторе,  значительно уменьшая К, т.е.  способствуя  снижению  мощности реактора. Нарастает явление так называемого (Внимание! Второй термин!) ксенонового отравления реактора. При этом, накопившийся в реакторе йод-135 еще активнее начинает превращаться в ксенон. Это явление называется (Внимание! Третий  термин!) йодная яма.

В таких условиях реактор плохо отзывается на выдвижение управляющих стержней (трубок с бором или кадмием), т.к. нейтроны активно поглощаются ксеноном. Однако,  в конце концов при достаточно значительном выдвижении управляющих стержней из активной зоны мощность реактора начинает расти, тепловыделение усиливается и ксенон начинает очень быстро выгорать. Он уже не захватывает свободные нейтроны и их количество стремительно увеличивается. Реактор дает резкий скачок мощности. Опускаемые в этот момент управляющие стержни не успевают достаточно быстро поглотить нейтроны. Реактор может выйти из под контроля оператора.

Инструкции требуют при определенном количестве ксенона в активной зоне не пытаться поднять мощность реактора, а опустив управляющие стержни, окончательно остановить реактор. Но на естественное удаление ксенона из активной зоны реактора уходит до нескольких суток. Все это время электроэнергия данным энергетическим блоком не вырабатывается. (Этот фактор сыграл немаловажную роль в сценарии событий приведших к катастрофе)

Есть еще один термин - реактивность реактора , т.е. как реактор отзывается на действия оператора. Этот коэффициент определяется по формуле р=(К-1)/К. При р>0 идет разгон реактора, при р=0 реактор работает в стабильном режиме, при р< 0  идет затухание реактора.

Принципы устройства  реактора

Сборка чернобыльской АЭСЯдерное топливо представляет собой таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 %  двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции деления, характерной для ядерного взрыва требуется концентрация урана 235 более 60%.

Двести таблеток ядерного топлива загружаются в трубку, изготовленную из металла цирконий. Длина этой трубки 3.5м. диаметр 1.35 см. Эта трубка называется (Внимание! Пятый термин!) ТВЭЛ- тепловыделяющий элемент. 36 ТВЭЛов собираются в кассету (другое название "сборка").

Реактор   марки РБМК-1000 (реактор большой мощности канальный электрической  мощностью 1000  мегаватт) представляет собой цилиндр диаметом 11.8м.и высотой 7 метров, сложенный из графитовых блоков (размер каждого блока (25х25х60см.). Через  каждый блок проходит  сквозное отверстие- канал. Всего имеется 1872 таких отверстий - каналов в этом цилиндре. 1661 каналов предназначены для касет с ядерным топливом, а 211 для управляющих стержней содержащих   поглотитель нейтронов (кадмий или бор). Цилиндр реактора окружен стенкой  толщиной в 1 метр из таких же графитовых  блоков, но не имеющих отверстий. Все это окружено стальным баком, заполненным водой. Вся эта конструкция лежит на металлической плите и накрыта сверху другой плитой (крышкой). Общий вес реактора 1850 тонн. Общая масса ядерного топлива  в реакторе 190 тонн.

На рисунке слева сборка с ТВЭЛами в канале реактора, справа управляющий стержень в канале реактора.

Каждый реактор подает пар на две турбины. Каждая турбина имеет электрическую мощность 500 мегаватт. Тепловая же мощность реактора 3200 мегаватт.

Принцип работы реактора состоит в следующем:
Вода под давлением  70 атмосфер  главными циркуляционными насосами (3) (Внимание! Шестой   термин! ) ГЦН подается  по трубопроводам (2)  в нижнюю часть реактора(1), откуда по каналам продавливается в верхнюю часть реактора, омывая сборки с ТВЭЛами.  В ТВЭлах под воздействием нейтронов идет цепная ядерная реакция с выделением большого количества тепла. Вода нагревается до температуры 248 градусов и вскипает. Смесь, состоящая из 14% пара и 86% воды поступает по трубопроводам (3) в барабаны сепараторы (2), где происходит отделение пара от воды. Пар по трубопроводу (4) подается в турбину.

Из турбины по трубопроводу(5) пар, уже превратившийся в воду с температурой 165 градусов возвращается в барабан-сепаратор, где смешивается с горячей водой, поступившей из реактора, и охлаждает ее до 270 градусов. Эта вода по трубопроводу (1) вновь поступает в насосы. Цикл замкнулся. По трубопроводу(6) извне в сепаратор может поступать дополнительная вода.

Главных циркуляционных насосов всего восемь. Шесть из них в работе, а два составляют резерв. Барабанов сепараторов всего четыре. Размеры каждого 2.6м.в диаметре, длиной 30 метров. Работают они одновременно. На рисунке показан блок чернобыльской АЭС в частичном разрезе. Голубым окрашены сечения стен, красным активная зона реактора, светло-зеленым ГЦН (видны четыре из восьми насосов), светло-коричневым барабаны сепараторы. В верхней части виден кран, с помощью которого производится загрузка и выгрузка сборок в реактор.

Предпосылки к катастрофе

Реактор не только источник электроэнергии, но и ее потребитель. Пока из активной зоны реактора не будет выгружено ядерное топливо, через нее необходимо непрерывно прокачивать воду для того, чтобы не перегрелись ТВЭЛы. Обычно часть электрической мощности турбин отбирается на собственные нужды реактора. Если реактор остановлен (замена топлива, профилактические работы, аварийная остановка), то электропитание реактора идет от соседних блоков, внешней электросети.

На крайний аварийный случай предусмотрено питание от резервных дизель-генераторов. Однако в самом лучшем случае  они смогут начать выдавать электроэнергию не раньше, чем через одну-три минуты. Возникает вопрос: чем питать насосы, пока дизель-генераторы не выйдут на режим? Необходимо было выяснить - сколько времени с момента отключения подачи пара на турбины, они, вращаясь по инерции, будут вырабатывать ток, достаточный для аварийного питания основных систем реактора. Первые испытания показали, что турбины не могут обеспечить электроэнергией основные системы в режиме вращения по инерции (режим выбега).

Специалисты "Донтехэнерго" предложили свою систему управления магнитным полем турбины, что обещало решить проблему энергопитания реактора  при аварийном отключении подачи пара  на турбину.
25 апреля предполагалось опробовать эту систему в работе, т.к. 4-й энергоблок в этот день все равно планировалось остановить для ремонтных работ.

Однако требовалось во-первых, что-то использовать в качестве балластной нагрузки для того,  чтобы можно было производить замеры на выбегающей турбине. Во- вторых, было известно, что при падении тепловой мощности реактора до 700-1000 мегаватт сработает система аварийной остановки реактора (САОР), реактор будет остановлен и невозможно будет повторить эксперимент несколько раз, т.к. произойдет его ксеноновое отравление.

Было решено заблокировать систему САОР, а в качестве балластной нагрузки использовать резервные ГЦН.

Это были ПЕРВАЯ и ВТОРАЯ трагические ошибки, повлекшие за собой все остальное. Во-первых совершенно незачем было блокировать САОР. Во-вторых, использовать можно было в качестве балластной нагрузки что угодно, только не циркуляционные насосы. Именно они связали между собой совершенно далекие друг от друга электротехнические процессы и процессы, происходящие в реакторе.

Здесь повествование можно разделить на две ветку. Первую - Рассказ непосредственного участника чернобыльской аварии  и восстановление событий, которое приведено ниже.

Хроника Чернобыльской катастрофы

25 апреля 1986г. 1.00. Начато постепенное снижение мощности реактора.

13.05. Мощность реактора снижена с 3200 мегаватт до 1600. Остановлена турбина №7. Питание электросистем реактора переведено на турбину №8.

14.00. Заблокирована система аварийной остановки реактора САОР. В это время диспетчер "Киевэнерго" распорядился задержать остановку блока (конец недели, вторая половина дня, растет потребление энергии). Реактор работает на половинной мощности, а САОР так и не подключена вновь. Это грубая ошибка персонала, но на развитие событий она не повлияла.

23.10. Диспетчер снимает запрет. Персонал начинает снижать мощность реактора.

26 апреля 1986г. 0.28. Мощность реактора снизилась до уровня, когда систему управления движением управляющих стержней надо переводить с локальной на общую ( в обычном режиме группы стержней можно перемещать независимо друг от друга - так удобнее, а при низкой мощности все стержни должны управляться с одного места и двигаться одновременно). Этого сделано не было. Это была ТРЕТЬЯ  трагическая ошибка. Одновременно оператор допускает ЧЕТВЕРТУЮ   трагическую ошибку. Он не выдает машине команду "держать мощность". В результате мощность реактора стремительно снижается до 30 мегаватт. Кипение в каналах резко снизилось, началось ксеноновое отравление реактора. Персонал смены допускает ПЯТУЮ   трагическую ошибку (я бы действиям смены в этот момент дал бы иную оценку. Это уже не ошибка, а преступление. Все инструкции предписывают в такой ситуации глушить реактор). Оператор выводит из активной зоны все управляющие стержни.

1.00. Мощность реактора удалось поднять до 200 мегават против предписанных программой испытаний  700-1000.  Из-за нарастающего ксенонового отравления реактора мощность поднять выше не удается.

1.03. Начался эксперимент. К шести работающим главным циркуляционным насосам подключается в качестве балластной нагрузки седьмой насос.

1.07. Подключается в качестве балластной нагрузки восьмой насос. На работу такого количества насосов система не расчитана. Начался кавитационный срыв ГЦН (им просто не хватает воды). Они высасывают воду из барабанов сепараторов и ее уровень в них опасно понижается. Огромный поток довольно холодной воды через реактор снизил парообразование до критического уровня. Стержни автоматического регулирования машина полностью вывела из активной зоны.

1.19. Вследствие опасно низкого уровня воды в барабанах сепараторах оператор увеличивает подачу в них питательной воды (конденсата). Одновременно персонал допускает ШЕСТУЮ   трагическую ошибку ( я бы сказал - второе преступное деяние). Он блокирует системы остановки реактора по сигналам недостаточного уровня воды и давлению пара.

1.19.30 Уровень воды в барабанах сепараторах начал расти, но из-за снижения температуры воды, поступающей в активную зону реактора и ее большого количества, кипение там прекратилось. Последние стержни автоматического регулирования покинули активную зону. Оператор допускает СЕДЬМУЮ   трагическую ошибку. Он полностью выводит из активной зоны и последние стержни ручного управления, лишая себя тем самым возможности управлять процессами, происходящими в реакторе. Дело в том, что высота реактора 7 метров и он хорошо отзывается на перемещение управляющих стержней, когда они перемещаются в средней части активной зоны, а по мере удаления их от центра управляемость ухудшается. Скорость перемещения стержней 40см. в сек.

1.21.50 Уровень воды в барабанах-сепараторах несколько превысил норму и оператор отключает часть насосов.

1.22.10 Уровень воды в барабанах сепараторах стабилизировался. В активную зону теперь поступает намного меньше воды, чем до этого момента. В активной зоне вновь начинается кипение.

1.22.30 Из-за неточности систем управления, не расчитанных на подобный режим работы оказалось, что подача воды в реактор составляет около 2/3 от потребного. В этот момент компьютер станции выдает распечатку параметров реактора с указанием на то, что запас реактивности опасно мал. Однако персонал просто проигнорировал эти данные ( это было третье преступное деяние в эти сутки). Инструкция предписывает в такой ситуации немедленно аварийным порядком глушить реактор.

1.22.45 Уровень воды в сепараторах   стабилизировался, количество поступающей в реактор воды удалось привести в норму. Тепловая мощность реактора медленно начала расти. Персонал предположил, что работу реактора удалось стабилизировать и было решено продолжить эксперимент. Это была   ВОСЬМАЯ     трагическая ошибка. Ведь практическии все стержни управления находились в поднятом положении, запас реактивности был недопустимо мал, САОР отключена, системы автоматической   остановки реактора по ненормальному давлению пара и уровню воды  заблокированы.  

1.23.04 Персонал блокирует систему аварийной остановки реактора, срабатывающую в случае прекращения подачи пара на  вторую турбину, если до этого уже была выключена первая. Напомню, что турбина № 7 была выключена еще в 13.05 25.04 и сечас работала только турбина №8. Это была   ДЕВЯТАЯ трагическая ошибка. ( и четвертое преступное деяние в эти сутки). Инструкция запрещает отключать эту систему аварийной остановки реактора во всех случаях. Одновременно персонал перекрывает подачу пара на турбину №8. Это идет эксперимент по замеру электрических характеристик работы турбины в режиме выбега. Турбина начинает терять обороты, напряжение в сети снижается и ГЦН, питающиеся от этой турбины начинают снижать обороты.


Следствие установило, что если бы не была отключена система аварийной остановки реактора по сигналу прекращения подачи пара на последнюю турбину, то катастрофы не произошло бы. Автоматика бы заглушила реактор. Но персонал предполагал повторить эксперимент несколько раз на различных параметрах управления магнитным полем генератора. Остановка реактора исключала такую возможность.

Альтернативное мнение- Рассказ непосредственного участника чернобыльской аварии

Давайте посмотрим, что было дальше.

Автор : Ю.Веремеев   Из военной истории, науки, практики

    Мои сайты :
        Тайны Сети      Тайны Планет   Тайны Науки   Тайны Жизни